Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2.

نویسندگان

  • Sinéad Collins
  • Dieter Sültemeyer
  • Graham Bell
چکیده

Estimates of the effect of increased global atmospheric CO(2) levels on oceanic primary productivity depend on the physiological responses of contemporary phytoplankton populations. However, microalgal populations will possibly adapt to rising CO(2) levels in such a way that they become genetically different from contemporary populations. The unknown properties of these future populations introduce an undefined error into predictions of C pool dynamics, especially the presence and size of the biological C pump. To address the bias in predictions introduced by evolution, we measured the kinetics of CO(2) uptake in populations of Chlamydomonas reinhardtii that had been selected for growth at high CO(2) for 1000 generations. Following selection at high CO(2), the populations were unable to induce high-affinity CO(2) uptake, and one line had a lower rate of net CO(2) uptake. We attribute this to conditionally neutral mutations in genes affecting the C concentrating mechanism (CCM). Lower affinity CO(2) uptake, in addition to smaller population sizes, results in a significant reduction in net CO(2) uptake of about 38% relative to contemporary populations under the same conditions. This shows how predictions about the properties of communities in the future can be influenced by the effect of natural selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uptake of HCO3 2 and CO2 in Cells and Chloroplasts from the Microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta

Mass-spectrometric disequilibrium analysis was applied to investigate CO2 uptake and HCO3 2 transport in cells and chloroplasts of the microalgae Dunaliella tertiolecta and Chlamydomonas reinhardtii, which were grown in air enriched with 5% (v/v) CO2 (high-Ci cells) or in ambient air (low-Ci cells). Highand low-Ci cells of both species had the capacity to transport CO2 and HCO3 , with maximum r...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii.

Acclimation to varying CO2 concentrations and light intensities is associated with the monitoring of environmental changes by controlling genetic and physiological responses through CO2 and light signal transduction. While CO2 and light signals are indispensable for photosynthesis, and these environmental factors have been proposed as strongly associated with each other, studies linking these c...

متن کامل

Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes

Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...

متن کامل

Periplasmic carbonic anhydrase structural gene (Cah1) mutant in chlamydomonas reinhardtii

To survive in various conditions of CO2 availability, Chlamydomonas reinhardtii shows adaptive changes, such as induction of a CO2-concentrating mechanism, changes in cell organization, and induction of several genes, including a periplasmic carbonic anhydrase (pCA1) encoded by Cah1. Among a collection of insertionally generated mutants, a mutant has been isolated that showed no pCA1 protein an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 29 9  شماره 

صفحات  -

تاریخ انتشار 2006